13. The Dimeric and Polymeric Anhydride of 2,3-O-Isopropylidene- β -D-ribofuranose. An NMR Study

by Tammo Winkler* and Beat Ernst

Ciba-Geigy AG, CH-4002 Basel

(27.X.87)

The ¹H- and ¹³C-NMR data of the dimeric anhydride 1 of 2,3-O-isopropylidene- β -D-ribofuranose are reported together with the ¹H-NOE values. The data show that the products of the polymerization of 1,5-anhydro-2,3-O-isopropylidene- β -D-ribofuranose are α - and β -D-ribofuranans and not an α -D-ribofuranan and a β -D-ribofuranan as claimed before [2] [3].

Introduction. – The dimeric anhydride 1 of 2,3-*O*-isopropylidene- β -D-ribofuranose, a known compound [1], was prepared in one step from a mixture of the methyl D-ribosides (α - and β -D-ribofuranosides 3 and 4, respectively, as well as α - and β -D-ribopyranosides 5 and 6, respectively) and acetone/H₂SO₄/CuSO₄. Since in 1957 1 was not characterized by NMR spectroscopy, the ¹H- and ¹³C-NMR spectra were now recorded and the ¹H-NOE values determined. Searching the literature for reference compounds, it was detected that the products of the polymerization of 1,5-anhydro-2,3-*O*-isopropylidene- β -D-ribofuranose, described as an α -D-ribofuranan and a β -D-ribofyranan [2] [3], were in fact α - and β -D-ribofuranans. This is shown in this paper by a comparison of the reported NMR data with those of 1 and the four methyl D-ribosides 3–6 [4].

	H-C(1)	H-C(2)	H-C(3)	HC(4)	H _{endo} -C(5)	H _{exo} -C(5)	CH _{3endo}	CH _{3exo}
1	5.05 (<i>J</i> < 0.3)	$ \begin{array}{l} 4.51 \\ (J(2,3) = 6) \end{array} $	4.82 (J(2,3) = 6, J(3,4) = 1)	4.29	3.77 (J(5,5) = 11.5, J(4,5) = 2)	3.68 (J(5,5) = 11.5, J(4,5) = 1.5)	1.48	1.31
2 [5]	5.13 (<i>J</i> = 0)	5.48 (<i>J</i> (2,3) = 5)	5.76 (J(2,3) = 5, J(3,4) = 7.3)	3 J(4,50	.6-4.4 (J(5,5) = 13) endo) = $J(4,5exo)$.5, = 1.5)		
7 [3]	5.05 (<i>J</i> = 0)	3.82 ($J(2,3) = 4.3$)	3.76 ($J(2,3) = 4.3$, J(3,4) = 7.9)	4.11	3.93 (J(5,5) = 10,5, J(4,5) = 2.4)	3.4 (J(5,5) = 10.5, J(4,5) = 7.9)		

Table 1. ¹H-NMR Data of β -D-Ribofuranose Derivatives 1, 2, and 7

Results and Discussion. – Dimer 1 is obtained in 35% yield by reacting an unseparated mixture of the four methyl D-ribosides 3–6 (obtained by methylation of D-ribose in MeOH/HCl) with acetone/H₂SO₄/CuSO₄. The ¹H-NMR spectra of 1, its corresponding 2,3,2',3'-tetraacetate 2 [5], and 2,3-di-O-methyl- $(1\rightarrow 5)$ - β -D-ribofuranan (7; from [3], but as revised structure) are collected in *Table 1. Table 2* shows the ¹³C-NMR data of 1 and the polymeric anhydrides 7–12 [2] [3], together with the data of the four methyl D-ribosides 3–6 [4]. The NOE values of 1 are presented in *Table 3*.

The assignment of the ¹H-NMR spectrum of **1** is straightforward given the rigid 2,3-*O*-isopropylidene-ribofuranose moiety, and the observed coupling constants define the β -D-ribofuranose configuration (*cf. e.g.* [6]). In addition, the NOE values (*Table 3*) corroborate the conformation of the central ten-membered ring, as determined by *Szarek* [5] for the 2,3,2',3'-tetraacetate analogue **2** on the basis of the small vicinal coupling

	C(1)	C(2)	C(3)	C(4)	C(5)	(CH ₃) ₂ C	CH ₃	CH ₃
β -D-Series								
2,3:2',3'-Di-O-isopropyliden-β-D-ribo-								
furanose 1.5':1',5-dianhydride (1)								
in CDCl ₃	106.6	86.5	81.8	87.6	65.2	111.7	26.4	24.9
in CD ₂ Cl ₂	106.9	86.7	82.2	87.8	65.4	111.8	26.4	24.8
2,3- <i>O</i> -Isopropylidene $(1 \rightarrow 5)$ - β -D-ribo-								
furanan (8) in CH ₂ Cl ₂ [2]	109	86	82	86	70	112	27	25
$(1\rightarrow 5)$ - β -D-Ribofuranan (9) [2]	108.2	74.7	71.9	81.7	70.4			
Methyl β -D-ribofuranoside (4) [4]	108.0	74.3	70.9	83.0	62.9			
Methyl β -D-ribopyranoside (6) [4]	103.1	71.0	68.6	68.6	63.9			
2,3-Di-O-methyl- $(1 \rightarrow 5)$ - β -D-ribo-								
furanan (7) [3]	105.7	81.5 ^a)	82.0 ^a)	80.9 ^a)	70.8			
α-D Series								
2,3-O-Isopropylidene- $(1 \rightarrow 5)$ - α -D-ribo-								
furanan (10) in CH_2Cl_2 [2]	ca. 103	ca.82 ca	1.82 ca	a.82 ce	a. 70	ca. 116		
(1→5)-α-D-Ribofuranan (11) [2]	102.9	71.5	70.4	83.6	68.6			
Methyl α-D-ribofuranoside (3) [4]	103.1	71.1	69.8	84.6	61.9			
Methyl α -D-ribopyranoside (5) [4]	100.4	69.2	70.4	67.4	60.8			
2,3-Di-O-methyl-(1→5)-α-D-ribo-								
furanan (12) [3]	102.1	81.4 ^a)	82.9 ^a)	79.1 ^a)	68.0			
^a) Assignment may be interchanged.								
furanan (12) [3] ^a) Assignment may be interchanged.	102.1	81.4 ^a)	82.9 ^a)	79.1ª)	68.0			

Table 2. ¹³C-NMR Chemical Shifts of D-Ribose Derivatives

Proton irradiated	Proton observed								
	H-C(1)	H-C(2)	H-C(3)	HC(4)	H _{endo} -C(5)	H _{exo} -C(5)			
HC(1)		0.05			0.05	n.d.			
H-C(2)	0.07		0.17						
HC(3)		0.15		0.04		0.03			
H-C(4)			0.05		0.04	0.06			
$H_{endo} - C(5)$	0.20			0.19		n.d.			
$H_{exo}-C(5)$	0.06		0.09	0.17	n.d.				
CH _{3endo}	0.06			0.06					
CH _{3exo}		0.13	0.10						
^a) n.d. = not determ	nined.								

Table 3. ¹H-NOE Values for 1^a)

between H-C(4), and H_{endo}-C(5) and H_{exo}-C(5) (see *Table 1*). These coupling constants are very similar in **1** indicating already an identical conformation, 'which exhibits an up-down-up-down arrangement of the four O-atoms within the ten-membered ring' [5] (cf. A). This is born out, e.g., by the large NOE values between H_{endo}-C(5) and H-C(1), by the large and similar NOE values between H-C(4) and both H_{endo}-C(5) and H_{exo}-C(5), and, finally, by the NOE value of 0.09 between H_{exo}-C(5) and H-C(3). The exo and endo CH₃ groups can be differentiated nicely by their NOE values with H-C(1) and H-C(4), and H-C(2) and H-C(3), respectively, confirming thereby the β -D-configuration of the ribose moiety. A comparison of the 'H coupling constants of **1** and **2** shows them to be very similar, except J(3, 4) which is much smaller in **1** as a consequence of the rigidity of the 2,3-O-isopropylidene-ribofuranose moiety (*Table 1*). In conclusion, coupling constants and NOE values firmly establish the dimeric ribofuranose structure of **1** in agreement with the earlier work [1] [5].

The assignment of the ¹³C-NMR spectrum of 1 (*Table 2*) is based on a selective ¹H-decoupling experiment. The data of 1 in CD_2Cl_2 allow a direct comparison with the polymeric anhydride 8 [2]. As can be seen, the chemical shift of 1 and 8 are very similar, given the precision with which the shifts can be read from *Fig. 5* in [2]. The only exception is C(5) which absorbs at higher field in 1 than in 8 due to steric compression in the dimer 1. Polymer 8, however, is reported to be a β -D-ribopyranan. Since 1 is undoubtedly a ribofuranose dimer, it is shown by the reported ¹³C-NMR data of 8, its deprotected derivative 9, and the corresponding 2,3-di-O-methyl derivative 7 that these compounds are all ribofuranoses.

The chemical shift of the following three C-atoms can be used for that purpose: C(1), C(5), and C(4). The very low chemical shift of C(1) in **8** (109 ppm) and **9** (108.2 ppm) are already indicative of β -D-ribofuranoside (cf. the chemical shift of C(1) in methyl β -D-ribofuranoside (**4**; 108.0 ppm) with that of the α -D-anomer **3** (103.1 ppm) and

of both methyl D-ribopyranosides 5 and 6 (100.4 and 103.1 ppm, resp.)). Furthermore, C(5) in 8 or 9 shows a downfield shift of *ca*. 6 ppm as compared with the same C-atom in methyl β -D-ribopyranoside (6). This cannot be explained by the pyranan structure as glycosidic-bond formation in 4-position should cause a small upfield shift of C(5) (cf. e.g. C(5) in (1 \rightarrow 4)-oligosaccharides [7]). In a furanan structure, however, the downfield shift of C(5) is easily understood as the β -effect upon glycoside-bond formation at C(5).

Finally, C(4) absorbs at rather low field (e.g. 81.7 ppm in 9). The downfield shift induced by glycosidic-bond formation at C(4) in pyranoses, though, is ca. 9 ppm (cf. C(4) in $(1 \rightarrow 4)$ -oligosaccharides [7]), resulting in an expected shift of 77.6 ppm for C(4) in β -D-ribopyranan as calculated from methyl β -D-ribopyranoside (6). Compared with this value, the agreement of C(4) in 9 (81.7 ppm) with C(4) in methyl β -D-ribofuranoside (4; 83.0 ppm) is much better.

A further argument in favor of the furanan structure derives from the chemical-shift values of the α -D-isomers **10–12**, reported (correctly) to be α -D-ribofuranans. A comparison with methyl α -D-ribofuranoside (3) and the corresponding pyranoside **5** shows the same trends for the chemical shifts of C(1), C(5), and C(4) as discussed above for the β -D-anomers. Indeed, the shift differences ($\Delta \delta_c$) between corresponding C-atoms in **9** and **11**, and in **4** and **3**, respectively, are virtually identical (the $\Delta \delta_c$ represent the effect on δ_c induced by the change of configuration at the anomeric C-atom).

A final argument is presented by the ¹H-NMR spectrum of 2,3-di-*O*-methyl- $(1 \rightarrow 5)$ - β -D-ribofuranan (7; *Table 1* [3]), the δ_{\circ} of which can be correlated to β -D-ribofuranan 9 with the aid of methylation shifts (*cf. e. g.* [8]). The following coupling constants in 7 and 2 are very similar: J(1, 2) (0 Hz for both 7 and 2), J(2, 3) (4.3 Hz for 7, 5 Hz for 2), J(3, 4) (7.9 Hz for 7, 7.3 Hz for 2). It is concluded again that the configuration and conformation of the ribose rings are identical in 2 and 7. As expected, both J(4, 5) are completely different in the ten-membered ring compound 2 and in the extended polymer 7. On the other hand, the coupling constants of 7 bear no resemblance to those reported for the ribopyranosies [4], a fact which was explained [3] by an unusual conformation of the six-membered ring.

On the basis of the arguments presented, the reported $(1 \rightarrow 4)$ - β -D-ribopyranan structures are in fact $(1 \rightarrow 5)$ - β -D-ribofuranans. A central claim in [2] [3] is, therefore, invalid.

Experimental. – The ¹³C-NMR spectra were recorded on a *Varian-XL-300*, the ¹H-NMR spectra on a *Bruker-AM-360* spectrometer. The NOE difference spectra were obtained from a degassed CDCl₃ soln.

REFERENCES

- [1] E. Vis, H. G. Fletcher, J. Am. Chem. Soc. 1957, 79, 1182.
- [2] T. Uryu, K. Kitano, K. Ito, J. Yamanouchi, K. Matsuzaki, Macromolecules 1981, 14, 1.
- [3] T. Uryu, J. Yamanouchi, T. Kato, S. Higuchi, K. Matsuzaki, J. Am. Chem. Soc. 1983, 105, 6865.
- [4] K. Bock, H. Thøgersen, Ann. Rep. NMR Spectrosc. 1982, 13, 1.
- [5] J.F. Stoddart, W.A. Szarek, Can. J. Chem. 1968, 46, 3061.
- [6] J. D. Stevens, H. G. Fletcher, J. Org. Chem. 1968, 33, 1799.
- [7] K. Bock, C. Pedersen, H. Pedersen, Adv. Carbohydr. Chem. Biochem. 1984, 42, 193.
- [8] J. Reuben, Carbohydr. Res. 1986, 157, 201.